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A method of construction of a process of successive approximations based on the use of
an effective shear modulus is proposed for solution of problems of the theory of small
elastic-plastic strains, This method permits solution of problems for materials in which
the region of linearity between stress and strain is either absent or very small, It is shown
herein that the choice of effective modulus is restricted by several conditions which,
when violated, can lead to divergent processes, In the case of an incompressible material,
the convergence of the successive approximations to the generalized solution of the first
and the second boundary value problems is proved under the restrictions mentioned,

In an example it is shown that the limitations required for convergence of the approxi-
mations in the general case can be relaxed in the solution of specific problems,

As is well known [1] problems of the theory of small elastic-plastic deformations re-
duce to finding the stresses oy;, strains ex;, and displacements u;, which satisfy the equa-
tions of equilibrium, the stress-strain and stress-displacement laws, and also the boundary

conditions Sip,x +X; =0 (1, k=12,3) (1)
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Here the symbol { ),; denotes differentiation with respect to the Cartesian coordi-
nate z; of a point in the region Q, which is occupied by the body ; summation is to be
carried out on repeated subscripts ;.6; and e, are the intensities of shearing stress and
sttain; o and e are the mean stress and strain; 9, is the Kronecker delta; K is the bulk
modulus; G is the shear modulus; X; are the body forces; g;, and u;, are the surface
tractions and displacements ; and j, are the direction cosines of the normal to the surface
T' which is the boundary of the finite region Q.

The first and second of the boundary conditions (4) determine, respectively, the first
and second boundary value problems of the theory of plasticity for the system of equa-
tions (1) — (3).

The function @ (¢;) introduced by Il'iushin in the equation relating to shear stress
and shear strain intensities [1] permits application of the method of elastic solutions

owing to the fact that for strain hardening materials
ofe) —ole) | do (¢;°) ¢;°
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The smallness of the parameter o, which ensures the convergence of the process of
successive approximations [2 and 3], allows an especially effective solution of the prob-
lem when the deviations from elastic stains in the body are not very large. As the func-
tion ® increases the convergence of the successive approximations still obtains, but the
rate of convergence decreases, It is, therefore, expedient to rewrite the relation between
o, and ¢, when solving problems involving considerable departures from elastic strains
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in such a way that the convergence of the successive approximations might be better
than in the uspal method of elastic solutions, This can be guaranteed if instead of the
usual shear modulus ¢ ,some "effective” shear modulus G * is used,

It is obvious from physical considerations that after development of plastic strains, the
"mean" shear modulus in the body will be smaller than the pwrely elastic modulus G ;
therefore, (" should also be taken smaller than ¢,

We introduce the function 1{e;) as follows:

Tle)=1—[1—0()]C/6" @ >0 ®
so that for 6; we obtain, in accordance with (2) and (8},
0; = 3G, [1 — 1 (¢e,)] M
The following inequalities then hold for the function t{e;):
G T{es) €55 4 T{ey) &gy a T {E) T {33}
- A P ®
3&2 ;t e’-l 3G eiﬁ — 6{1

They follow from the condition
3G 2 (0 4 0y) [ (i 0yy) 2 a >0, 8;(0) =0

and from the condition of convexity of the curve o; {e;), which is true for a wide class
of experimental ¢, vs, ¢, relationships,
Taking account of (7), we can represent the equations of equilibrium in terms of dis-
placements in the form
(K'+ Y G%) U pi T GG g =— X; G Loy pbug )] =Gty 1),

(k, 1==1,2,3) ®
where the double scripts after 2 comma signify a second derivative with respect to the
corresponding coordinates,

We define a sequence of approximate solutions by the following recurrence relations
in a manner similar to the method of elastic solutions:
K+ 6oy + G uid = — X+ 0" [v, (" + wi)]  — Va6 (1,5 (10)

IThn—7% ({fi{“‘} }

The functions u";’"‘l? satisfy the first of the conditions {4) in the case of the first bound-
ary value problem, and the condition

I =Gy u 08y + 6 M0+ u M [ =00 +
+ 6%, [T+ Y u i 8] by b {11
in the case of the second boundary value problem,
Let us consider the conditions under which the sequence {10) with the appropriate
boundary conditions converges to a solution of Eq. (9). In what follows we shall assume

that the boundary condition (4) in the case of the first boundary value problem can be
made homogeneous U |p == {12

as a result of changing the body forces,

For arbjwary differentiable vector functions u = u;e; and v ==v8; {e; is the unit vec-
tor in the direction of the xj.axis), we define the scalar product and norm at a point by
the expressions

(w, V) =% (s, ,+ e 3o+ v, 20,8, 8,= Upy o O =Vp {13)
full=VY @ w)=% V2 {14
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It is easy to verify that the axioms for the scalar product [4] are thereby satisfied,
except for one which will not be used in what follows: it does not follow from jju || = 0
that u = 0.

Considering the system (9) as a vector equation, we form its scalar product with a con-
tinuously differentiable function v and integrate over the region Q. For the first bound-
ary value problem we then obtain Eq.

2 2 .
K Seuev dQ + 5 G* S(u, v) dQ =7 G* S‘c (lu) (u, v) dQ + S Xjp;dQ (15)
For the second boundary value problem we have an equation of the form

2 Al
KSeue,, dQ+ 5 G* S(u, v) dQ:%G' Sr(”u{]) @, v)dQ + ijvj dQ + S Sjov; AT (16)

It is obvious that a solution of Eq, (9) for the appropriate boundary conditions satisfies
Eq. (15) or (16), However, Eq, (9) does not always have a solution for the boundary con-
ditions indicated, This is related to the fact that in the classical formulation the prob-
lem is improperty posed, At the same time, for these problems Eq. (15) or (16) admits a
unique solution, which it is natural to consider as the solution of the problem which has
been formulated, We call such a solution a generalized solution of Eq, (9).

We shall examine the solution of Eq, (15) or (16) in a special function space where the
scalar product and norm are defined for differentiable functions in accordance with the

expressions (U, V)g = S (u, v)dQ, Jujg = V@, u)g (17)

In this same space we introduce in addition the norm || u |}, generated by the scalar
product 3K
(u, v)jo= g (u, v)149Q, (u, vi=(u, v) + E—:Guﬁv (18)

It is easy to show the equivalence of the norms || u ||g and || u |lio: for instance, for
the set of vector functions satisfying the condition (12), if the Stokes representation is
used for the displacements u;.

We shall determine the solution of the problem in the space H which is obtained by
the closure relative to the norm (17) of the set of twice continuously differentiable
vector functions, satisfying the condition (12) in the case of the first boundary value prob-
lem. There is no need to satisfy the boundary conditions in the case of the second bound-
ary value problem, since they are contained in (16) itself, It can be seen from Korn's
inequality {4] that functions the generalized derivatives of which are square summable
belong to H . In connection with this, we examine the condition of boundedness in H of

the 1 . _ _
he linear functionals | X ;9 | 53005dT

which occur in (15) and (16).
In accordance with the imbedding theorems [5], they hold if
X; € Ly(Q), P>, S E Lo (1), 4>
We show that under these conditions a solution of Eq, (15) exists in H (this result is
given in {2]). In what follows all the wansformations will be carried out only for the
first boundary value problem, since for the second boundary value problem all the proofs

are analogous in form,

Let us form the scalar product of (10) with a vector function v which is twice conti-
nuously differentiable and is equal to zero on the boundary of the region Q. Integrating
over Q, we set up the recurrence relation
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g
K Sa““*l) 0, dQ - é G* S(u<“+1>, V)dQ=5G" Sx u™ ) @™, v) do + ijvj- aQ (19)

The successive solutions of this relation in the space H are the generalized solutions
of the sequence (10), and they exist if the right-hand side of (19) is a functional which
is bounded in H on the set of vector functions v dense in H. This last is true, taking
account of the condition on X; for a suitable choice of the initial element, For instance,
it is sufficent that the vector function w(® be piecewise differentiable, For convenience
we shall assume that, as before, the function © (ei) is differentiable, (The existence of a
solution to the relation (19) is easily proven by using the known results {4] on the bound-
edness of the operator on the left-hand side of (19) from below by a constant in the
space H).

By the Schwartz inequality, the triangle inequality, and the definition (14), we obtain
the following from (19):

@™ — ™, g | = {rau™ D @O, v — oD @D, v e | =

=[ 2 0up @™ — w4 e gu — T DI, ) 0| <

T(e (n)) — (e ('ﬂ-l))
<§ [ T+ & [l — e v de <
i i

T (e,™My— 7 (") n .
< [f'&‘{ein -+ ig,{“}_g(;%-l) e(inﬂ) x:;rﬁ o™ — am-D la ivlha
i i

where &= (§,, &, &;) is the point determined by the mean value theorem,

We assume that almost everywhere in the region Q
ooy + 2 =T o cn < (20)
We then obtain * '

P —a® o < nlu® —u® Vo <M u® —u@ g

It follows from this that jju+p) _ u || —> 0 (since ||u{la <||ul|10) as n—> o
for any p ; then by virtue of the completeness of the space, the sequence u'™ converges
to a unique solution u & H.

The condition (20) is satisfied, for example, for T 2> (. Physically, the condition © 2> 0
means that in the problem under consideration the intensity of shear strain is almost eve-
rywhere in Q no smaller than the value e, determined from the equation 7 (¢,) = 0.

In particular, the convergence of the method of elastic solutions [2] follows from (20)
when T = o 2> (,i.e, 6G* = 6.

However, the convergence of the sequence w® holds under weaker limitations on <
than (20), We shall first show that the sequence u(n! determined by (10) is bounded in
H provided that | 7| < n<{1.

From Eq. (15) and the existence of a solution in H, it follows that the term indepen-
dent of u in (15) is a bounded linear functional in H, and, therefore, may be expressed

in the fe \
in the form SvafdQ-—-z/s G*(f, v)q, feH

It then follows from the recurrence relation (19) for v = u®™¥ that
BV 2= & D)0 + (v (1 0™ @™, 0™D) d2 < (Ihg +nlu®™ ) u™ Vg,

We then have
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P o <P o <nfu™ g+ e < WM u® g + (L™ it
which proves the boundedness of the sequence u(™ in H,
We show further that for all T the solution of Eq, (15) is unique, To do this we replace
T in (15) by @ and 6* by ¢ in accordance with (6), and assume that two solutions u; and
u. exist, Then substituting w; and uz successively into (15) and setting v—=u; — ¥z,
taking account of (14), (5), and the Schwartz inequality, we have

2
k{6, —0,040+ 36 {ju—mpao =

2
=56 {10 (lu) @s w—w) — o (JmD) @, v — w)) i =

2 o) —
=36 S {m (ua) | uy — wy [+ = 4 l?;‘li?)ﬂ = ;;)u(l[?]“l b (us, vz —w) (Jue | — )} dQ
2 i
<36 o+ B2 i —wpae < 5 o fiw—wpao
Since 1 <1, the inequality holds only for |u,— u,|]= 0 almost everywhere in

Q. For the first boundary value problem this means that u; = u, almost everywhere in
2. For the second boundary value problem, the solutions in this case coincide almost
everywhere up to rigid-body displacerments,
The proof of convergence of the sequence u(™ will be carried out for an incompres-
sible material, under the conditions
l T (e35) €55 = T(E5) €54
' 271 :t ¢
which are satisfied for 6" > /3 G. We shall seek the solution of the problem in the class
of vector functions for which the conditior of incompressibility, 8, = 0, holds, Then,
instead of (15) and (19), we have, respectively

3
S(u, v) dQ:Sr(”ulj)(u, v) dQ+—§E;SA’jvde (22)

i<t [t <t @1

fur, vyaa = {erumn @, v do + g5 { xs00 @

The following theorem on the convergence of the successive approximation process
holds,

Theorem , Under the assumptions made above regarding X; and the choice of the
initial element, the sequence (23) converges in the space H to the solution of Eq, (22)
provided that the condition > 16 24

is satisfied,

Proof, We introduce a representation of the functions (U, V) with the aid of their
means, Let u be extended beyond by assigning it the value zero there and let h(z, B)
be an averaging kernel in the circle ¢ of radius p with center at the point 2= Q. the
kernel being continuously differentiable in C the required number of times and equal to

zero outside €. Then we have
(a, \)_hm , vi,» (u, v),= B(u(E,) v({ENR(x, E)dC, EeC

Here the limit is to be undestood in the sense of the metric of the space of summable

functions, X
Since by assumption \X g dQ isa bounded functional in H, it can be represented in
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the form (g, v)g. Then (22) can be represented in the form
3 (..
Sgg (u, v),dQ =Sf(iiult)§3(u: v>pd9+§afggf?;,(8» v), dQ &)

A much more general meaning can be attributed to the relation that has been obtained
than in the case of (22) if the vector functions here are considered as functions of the two
variables § and z. Tothis end, we introduce a scalar product according to the formula

@ Vo =\ (@ v2dQ, (u Vh=lim(u(, &), v(z ), EEC zEQ
o P20

(the product (u. v): coincides with (u, v) if u and v are functions of § alone) and con-
sider the corresponding Hilbert space Hz of vector functions u defined in Q X Q for
which a finite norm || u |lq exists, By definition, the space H is imbedded in H,. It is
easy to prove that in H, there exists a solution of the equation

S(u. V)2 dQ = S" (Jul) (u ) dQ + 5%‘ S (g V)edQ (29)

if by t (j] ]}2) is meant a function with properties analogous to those of T (|fu|}) and
g = 8 (z, §). For this it is sufficient to replace T and G* by © and G , respectively, in
(26) according to (6) and to form a sequence of the form

Va2, vide={ o u s @™, e + 55 (@ viae

If the initial element of the sequence u® and g are selected so that (%, v);p and
(&, V)aq are bounded functionals in H;, then all the (u™, ¥)20 will be bounded function-
als in Hy and u™ exists in Hz. The convergence of the sequence to the unique solution
of Eq, (26) is proved in exactly the same way as for the case of the ordinary method of
elastic solutions, Equation (26) defines a certain operator T: g (z, §) = u (z, §). If
g (z, &) = g (&) and g (&) is chosen from Eq.(25) then the operator 7' determines u* (¢,
which is the solution of Eq. (25). For by setting v=v (£) in (26) we obtain Eq, (25) and
because of the uniqueness of solutions of Eqs, (25) and (26), the solution of Eq, (26) will
coincide in this case with the solution of Eq, (25). Let us now show that the sequence

of the form S(umﬂ), V) dQ = Sr (1u™ ) @™, v)2dQ + 'i(?:)—* S(g, V)2 dQ @n

E=g &), u'® =@ F
converges to the solution of Eq, (26).

The existence of the sequence u(n) follows from the boundedness ot the functionals
(u®, v)ag and (8, v)sg in H; and consequently of ali the (u!™, v)oq . By uniqueness,
this sequence coincides with the sequence (23).

Let us represent a vector function in H in the form

u=¢@-+¢ (28)
where @ and  are defined as follows, At a point in the neighborhood of which (u*,
u*) == 0, almost everywhere, we set (u, u*) ~
@ (@ & =gy u* @) Y=u—g¢g

and for points where (u* u*)= 0, weset @ =0, =u, Itis then easy to verify
that the representation (28) has the following properties
% P=0, (@ $==0, @ ex==H2[vki¢hk [ul’=Fek®+[¢k
It is clear from the last one that [[$|2 and || y]| 2 are summable functions,

In (26) and (27) we set v = @(™*1). Taking account of the properties of the decompo-
sition we have
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g (g, ¢(n+1))2 dQ =0, " \IJ("+1) “ 2= S T (“ u(’ﬂ) “2) (\P(") ‘p(‘n+1)) dQ

n {1, ™) a2 <n ™Y a4 o
From this
9™ 0 llao <™ flag <N $D llpq — 0 1 o0

that is, as » — oo, the sequence u(™ tends to become "parallel” to u*,
In accordance with (26) and (27) we have for the sequence u(®)

§m —wr, vpd={ (v (Qu™ ) @™, Ve — v (Ju* ) . vl o0
Setting v = u"t! — u* , using the representation (28), and taking account of (8)

we have
§ i (™) @, w™? — )y — 1 (Ju ) @ 0 —up] do =

={ 1x (1™ ) — = (1™ 1 @, ¢ —w)ed@ + {2 (™) ¢, ¢z 0 +
+ S’ (@™ ) (@™, @™ —u*)y — 7 (Ju* o) (w*, @V —u*),
(q)(n), (p(n+1) — u*)2 . (ll*. (P(n+1) . u.)g
Sr (u™ ) — = (| o™ [
Tu™ f — ] @™ J
n Sr U™ o (£ 1 0™ ) — T (u* o) (= U 1)
(£ ™ ) —(F u* )

+ (e au @, v pda<m (V™R 197k ¥ 167 R 19"~ v hdo+
+n{1e™ —ur g™ —u pa2 +n {4 B¢k io <
< 20m @™ —u* [y |7 g + 11 4™ oo 47V g + 116" — g | ¢ — u* g

since
SV Ie™RI ™ Jlt — 1] 9™ [ dR < e || ¥ [}2* d€,
Thus we have
[0 — e 3+ EED 3 < @ — u* oo™ = u* b +eal ¥ o
It follows from this that for sufficiently large n either

(@™ —u*, ¢V —u*), Q=

VeV +1v™ — ¢ ) 1™ k¢ ™'— u* |,d +

1™ —u® [ @™ — u |y dQ 4

To.—

A e 21]
il
€ — 1

[ ™) u* o < e (e is a sufficiently small quantity)
or 1o — u* g < M| @™ —u*|hg» nm <t
Assuming that the first relation, the desired one, is never satisfied, we arrive at the
result I qJ(n+p+1) —u* “29 "llp I lp(n) —u*| b0

and as p — o we have
[P — ¥ fyg — 0

The theorem is then proved,
It is easy to see from (27) that the process diverges if — ¥ >mn > 1. For setting
v =" we obtain
2183 <[ (e u@ R 0 e ae | = [ (@, € de| <|#™V ba 1V ha
and then
T™ g = 019" g > 0" 9P fyg = o<, n—> 00
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At the same time it is clear from the proof of the theorem that the condition o < 1
in (8) need not be satisfied everywhere in Q. In particular, this condition can be violated
on a manifold of smaller dimensionality than that to which the solution belongs,

The convergence of the process with respect to the norm of the space H occurs more
rapidly the smaller 7. is, It follows from (8) that 7 is smallest for |1 — G/ G* | ==
= |1 — a/3G* | <1, where a-is the smallest value of the slope of the o, vs, ¢; curve
in the interval of convergence of the process.,

We remark that the proof of convergence is also valid in the case when effective
moduli are chosen for each step of the process, In this case they should satisfy the con-
dition 1/ 6 < A < G, < B o=

We note further that for negative <, which correspond to small 6*, a2 nonmonotonic
sequence of approximations in the space Hz is obtained, This can easily be seen from
(27) if v is set equal to ¢ ™, since then the scalar product (§(™', ¢"*V)q is negative,
This circumstance permits us to make a "two-sided” estimate of the solution with the
aid of two successive approximations,

The proof which has been presented does not cover the case in which the scalar pro-
duct (13) degenerates into an ordinary product, However, in this case the method of
proof is made apparent by the example given below, in which consideration of the com-
pressibility makes it possible to obtain a less restrictive condition of convergence than
(24),

As an example let us examine the convergence of the process in the case of symmet-
rical deformation of a sphere, In the present case, the equation which is analogous to
{9) has the form

d‘?
(K+ a*)d 1 driw Sl d o4 LR, ulp=0 (29)

dr vt dr T3 7 dr i dar
where. u () is the radial displacement and R (r) is the radial body force, The sequence
of approximate solutions is defined in the form
ar'u

(K +—- ¢ ) ;i ::1_._%41 =§— G* ’—:;;;wnr«%f}‘«—mr), gy | =0 (30}

Multiplying (30) by a continuously differentiable function », s|p = 0, and integrating
over the interval {e, bl, the region of definition of the solution, we obtain, taking account
of {(8)

i * A ——— . . i
+36)37 ar r T Ir=
a
4 b
4 d up d Yy d o
=g G* S(T,ﬂ'z T L e **"r—-> re i dr = (31)
a
b
— é. c* S Tnfin Tnafing rg_d__ Un — Uny ‘zﬂd _2. d u
3 €in ok €1y 4 dr r ar e =3 rar T

Setting v == U,y ~— U, we obtain according to (21)

b o
4 1 dri{e,  —usl A d ¥4 Un\2
(K +5 G*>S{T__——n;r :} dfr:(K +*§‘G’>S(r§§*——‘—~lr ﬂ) dr
a

a
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b b
4 / d Up— u.m1 2 d Huq—Un\2 ty
S3 6 [S(rz ar r ) dr S(’LEIT r ) dr]
a

a
Then, inttoducing the definition

b
d u\2
L — i
fulg? = (r 5 2 ar
a

we obtain

\ 4G* »

‘l ufH-l - “nﬂn < ﬁﬁ “ Ky u‘n~l "Q =3 ﬁ Upy — un_l HQ A== “:”{zlff_"——-gc—‘-
i, e, the process converges like a geometric progression if A <C 1. The condition A < 1
can be satisfied even for q > 1, for example, in cases where there is a flow region in the
o, (¢;) curve, On the other hand, by choosing 7 equal to the left-hand side of the inequa-
lity (8), we find that the following inequalities are consequences of A< 1 :

4(G— G¥) 1—5v ¢
3K 40% <1 C>T—w 7 (32)

where v is Poisson's ratio, It is clear from this that in the present case convergence
occurs even for G* < 1/, G.

The condition (32) for G* is necessary, For let us assume that u is the elastic solution,
Then o = 0 and, setting u,, == u in (31), we have from (7) that

b
d u — 3 \2
(e o) 22 e
a,

b
4 d up—u _d Upy—¥
=~~§§(G——~G‘-—Gmn)r2-87 nr r“-a';‘—'—r—-—dr

It is clear from this that the negative v the approximation process is nonmonotonic.
The successive approximations are then obtained as upper and lower estimates of the
solution, Moreover the sequence will diverge if

4(G— G*)
3K Fagr =h>1

The authors are grateful to 1,1, Vorovich and Iu, P, Krasovskii for their discussions of

this work,

BIBLIOGRAPHY

1, I1'iushin, A, A,, Plasticity, Moscow-Leningrad, Gostekhizdat, 1948,

2., Vorovich,I,1, and Krasovskii, Iu, P,, On the method of elastic solu-
tions, Dokl. Akad, Nauk SSSR, Vol, 126, N4, 1959,

3. Krasovskii, Iu,P., Solvability of the two-dimensional problem of smali
elastic-plastic strains, Dokl, Akad, Nauk SSSR, Vol, 126, N5, 1959,

4, Mikhlin, S, G,, Direct Methods in Mathematical Physics, Moscow-Leningrad,
Gostekhizdat, 1950,

5, Sobolev,S,L,, Some Applications of Functional Analysis in Mathematical
Physics, Izd. Leningr, Univ, (Leningr, Univ, Press), 1950,

Translated by A R.R,



