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A method of construction of a process of successive approximations based on the use of 
an effective shear modulus is proposed for solution of problems of the theory of small 
elastic-plastic strains.This method permits solution of problems for materials in which 

the region of linearity between stress and strain is either absent or very small. It is shown 

herein that the choice of effective modulus is restricted by several conditions which. 
when violated, can lead to divergent processes. In the case of an incompressible material, 
the convergence of the successive approximations to the generalized solution of the first 
and the second boundary value problems is proved under the restrictions mentioned. 

In an example it is shown that the limitations required for convergence of the approxi- 

mations in the general case can be relaxed in the solution of specific problems. 
As is well known [l] problems of the theory of small elastic-plastic deformations re- 

duce to finding the stresses Gkjl strains ekj , and displacements Ujj which satisfy the equa- 
tions of equilibrium, the stress-strain and stress-displacement laws, and also the boundary 
conditions Q, h- + xj = 0 (i, k = 1, 2,3) (i) 

26i 
CSjf - c&jr; = ?&- fcjk - e6jk), 

ejh_=l/t(uj, k + “k, j) ("1 

G = 3Ke, bi -= 3Ge8 [ 1 - o (ei)] (3) 

@i I, = “ii p 
OjJi', Ir "6jo 

(41 

Here the symbol ( )Tj denotes differentiation with respect to the Cartesian coordi- 

nate Z, of a point in the region 52, which is occupied by the body ; summation is to be 
carried out on repeated subscripts ; ai and ei are the intensities of shearing stress and 

strain ; u and e are the mean stress and strain ; djr; is the Kronecker delta ; K is the bulk 

modulus ; G is the shear modulus ; Xf are the body forces ; or0 and ujo are the surface 

tractions and displacements ; and lk are the direction cosines of the normal to the surface 
p which is the boundary of the finite region 62. 

The first and second of the boundary conditions (4) determine, respectively, the first 

and second boundary value problems of the theory of plasticity for the system of equa- 

tions ( 1) - (3). 
The function w (ei) introduced by Il’iushin in the equation relating to shear stress 

and shear strain intensities [l] permits application of the method of elastic solutiom 

owing to the fact that for strain hardening materials 
0 (ei) - w (ei’) do (ei”) eiO 

0 d 0 (ei) d 0 (eJ + ei - ei’ 
Pi’ c= 

c/et” Qrl<l (5) 

The smallness of the parameter 01, which ensures the convergence of the process of 

successive approximations [2 and 31, allows an especially effective solution of the prob- 

lem when the deviations from elastic strains in the body are not very large. As the func- 
tion o increases the convergence of the successive approximations still obtains, but the 

rate of convergence decreases. It is, therefore, expedient to rewrite the relation between 
oi and et when solving problems involving considerable departures from elastic strains 
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fn such a way that the ~~ver~en~ of rhe snccess~ve a~ro~rna~~ might be better 
than in the usuaI method of efasdc solutims. This can be gu~anteed if instead of the 
usual shear modulus G *some “effective” shear moduIns G * is used, 

It is obvious from physical coosideratio~ that after devolo~ment of plastic stairs the 
“mean” shear rn~ul~ in the body will be smaller than the purely elastic rn~nl~ G ; 
therefore, G” should also be taken smaller than G, 

Wc introduce tbe foncti~ 7 (es) as follows : 

“(e~)==i-ff-W(ei)fGiG* fG‘>Ql m 
so that for 61 we obtain, in accordance with (2) and (6), 

Q$ = 3G%$[1 - r (e&J (I) 

The folI~w~ng inequalities then hold for the function r (et) :: 

and &urn &a condition of convexity of the curve oi (+s& which is trrte for a wide class 
of ~~~~rnen~~I ei vs. ei rola~ooships~ 

Taking accuunt of(?), we can represent the equations of eqniIib~Ium in terms of dis- 
placements iu the form 

. I 
tx $_ % G*) ‘k, kj + G*“cj* kfr = - xj + &?* 1’ @jl k -i- +, $1, R - % G” (=$ k II j 

fkj=l,2,3) m 

v&M the ~~b~~ scripts after ip comma signify a second ~I$vative with respect to the 
~es~d~g coordinates, 

We define a sequence of approximate solu~ons by the following recnrrence ~~~~rio~ 
in a manner similar to the method of elastic solutl~s s 

(K + ‘/sG’) ~~~~~ + G*~~~~} = - Xj -j- G* ~~~{u~~ + UC)& B - z/a G” (7% ~~~),~ (to) 

% = f (e*‘@) 

The functions $?+Q sat&Q the first of the condirions (4) in the case of tbo first bonnd- 
ary value probbm;and the condition 

f(x - 55 G’) =‘,“‘z iTijk + G” ~~~~~ _t ~~~~~~~~ I, fr =: sjo + , 

3 G%, +:,T’; + u$ - *1$ Ugfm Bj);f E, fp @Q 

in tht MSCS af the second boundary value problem, 
Let us consfder the conditions under which the sequence (10) with the appr~I,uiate 

boundary conditions converges to a solution of Eq. (9). In what follows we shall assume 
that the boundary condition (4) in the case of the first boundary value problem can be 
made homogeneous UjJru=:U (12) 

as a result of c~~~~g the body fmces. 
For arbitrary ~~f~ereo~abIe vector fun~tias u cz +B$ and P CL Vjej {et $S the wit V=ZC- 

tor in the direction of therf.-axis), we define the scalar product and norm at a point by 
the exp~ssio~ 
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It is easy to verify that the axioms for the scalar product [4] are thereby satisfied, 
except for one which will not be used in what follows: it does not follow from )( u 11 = 0 
that II = 0. 

Considering the system (9) as a vector equation, we form its scalar product with a con- 

tinuously differentiable function v and integrate over the region 51. For the first bound- 
ary value problem we then obtain Eq. 

K 
s 

6,u,de+;G* 
s 

(u, v) dQ=+G* 
5 

r (11 u 11) (u, V) dQ i- 
s 

Xjvj dQ (15) 

For the second boundary value problem we have an equation of the form 

K 
s 

6,6,dQ++G* 
s 

(u, v)dM=;G* 
s 

z (\iU 11) (U, V) dQ j- 
1 

XjVj dC2 + ’ bjo”j dr (161 
s 

It is obvious that a solution of Eq. (9) for the appropriate boundary conditions satisfies 

Eq. (15) or (16). However, Eq. (9) does not always have a solution for the boundary con- 
ditions indicated. This is related to the fact that in the classical formulation the prob- 

lem is improperty posed. At the same time, for these problems Eq. (15) or (16) admits a 
unique solution, which it is natural to consider as the solution of the problem which has 
been formulated. We call such a solution a generalized solution of Eq. (9). 

We shall examine the solution of Eq. (15) or (16) in a special function space where the 
scalar product and norm are defined for differentiable functions in accordance with the 

expressions 
(u, v)o = s (u, v) dQ2, I/ u lln = lh *k2 (17) 

In this same space we introduce in addition’the norm 11 u llro, generated by the scalar 
product 

(u, v)ro = \ (u, v)r dQ, 
3K 

(u, vh=(u, 9 + 2G'wb (18) 

It is easy to show the equivalence of the norms 11 u \Io and II u (Irot for instance, for 
the set of vector functions satisfying the condition (12), if the Stokes representation is 

used for the displacements Uj . 

We shall determine the solution of the problem in the space H which is obtained by 
the closure relative to the norm (17) of the set of twice continuously differentiable 
vector functions, satisfying the condition (12) in the case of the first boundary value prob- 

lem. There is no need to satisfy the boundary conditions in the case of the second bound- 

ary value problem, since they are contained in (16) itself. It can be seen from Korn’s 
inequality [4] that functions the generalized derivatives of which are square summable 

belong to H . In connection with this, we examine the condition of boundedness in H of 

the linear functionals \ XjvjdQ, J’ ajovjdr 

which occur in (15) and (16). 
In accordance with the imbedding theorems [5], they hold if 

xj E L, (8) P > %t “$I E L, (V, Q > “Is 

We show that under these conditions a solution of Eq, (15) exists in H (this result is 
given in [Z]). In what follows all the transformations will be carried out only for the 
first boundary value problem, since for the second boundary value problem all the proofs 

are analogous in form. 
Let us form the scalar product of (10) with a vector function v which is twice conti- 

nuously differentiable and is equal to zero on the boundary of the region 62. Integrating 
over 62, we set up the recurrence relation 
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The successive solutions of this relation in the space H are the generalized solutions 
of the sequence (lo), and they exist if the right-band side of (19) is a functional which 
is bounded in H on the Set of vector functions v dense in H . This last is true, taking 
account of the conditian on Xj for a suitable choice af the initial element. For instance, 
it is sufficent that the vector function u(s) be piecewise differentiable. For convenience 

we shall assume that, as before, the function Z (ei) is differentiable. (The existence of a 
solution to the relation 119) is easily proven by using the known results f4f on the bound- 
edness of the operator on the left-hand side of (19) from below by a constant in the 

space Hf. 
By the Schwartz inequality, the triangle inequality, and the definition f&Q, we obtain 

the following from (19) : 

1 (lP+l) - U(n), v)lp 1 = IF ~ z (I\ t&*3 II) (u(n), v) - zy jll+l) 11) (t&*-l), v) di2 1 = 
= I\ . T (II u(“) II) (u(n) _ lp-l), v) + [;d (11 u(n) II) - z (II t&Q-1) 101 W”), VI dQ I 6 

where E = (El, 8~~ g,) is the point determined by the mean value theorem. 
We assume that almost everywhere in the region 52 

1% (ei”) I •I- 
z (et”) - ‘c (ei’f 

@l’ G 7) < 1 cm 
We then obtain 

ein - 8’4 

I) pa - II@) ,h$J < q 11 IP - lP1) IhQ q Tp 11 u(l) - u(O) IIt* 

It follows from this that I[u(*+n) - u(n) Iln - 0 (since 11 u 11 ca < 11 u 11 ro) as n -+ 00 
for any p ; then by virtue of the completeness of the space, the sequence u”&’ converges 
to a unique solution u E I-L 

The condition (20) is satisfied, for example, for r > O~Physically, the condition a: >r Q 
means that in the problem under consideration rhe intensity of shear strain is almost eve- 

rywhere in 6;1 no smaller than the value eis determined from the equation z fee,,) = 0. 
In particular,tite.convergen~ of the method of elastic solutions fz] follows from (20) 

whenrso 30,i.e. G*=G. 

However, the convergence of the sequence UN holds under weaker limitations on z 
than (20). We shall first show that the sequence 0) determined by (10) is bounded in 

H providedthat/r1dtl<l. 

From Eq. (15) and the existence of a solution in ll F it follows that the term indepen- 
dent of u in (15) is a bounded linear functional in II ) and, therefore, may be expressed 
in the form 

5 
X&Q = 2/s CL (f, v)~~* f=K 

It then follows from the recurrence relation (19) for v = @f-11 that 

fuf=*l) //$ = (f, 

We then have 
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which proves the boundedness of the sequence u(n) in H , 

We show further that for all r the solution of Eq. (15) is unique. To do this we replace 

T in (15) by o and G* by G in accordance with (6). and assume that two solutions u1 and 

u2 exist. Then substituting ul. and uz successively into (15) and setting v = UI - uz, 
taking account of(M), (5). and the Schwartz inequality, we have 

K~(euz--k$J2d!2+& ~lju-z--ul~W2 = 
=gG $[W(IlU2U)(U2~ uz-~l)--(II~1ll)(u1? ua--1)la-2= 

2 
3G St 

~(llu’LlI)-~(IIut.lI) =- 0 (uzf /I u2 - a1 ii" + II 41 - II u1 11 (Ul. u2- 

4; G @(eiJ + 
0 (%) - 0 (%I) 

eia - eil 
eit jlu~-~~~~zdP~~Gq~~~u~-u~~~~~~ 

I 

Since q < 1, the inequality holds only for I[ u2 - u1 11 = 0 almost everywhere in 

~2. For the first boundary value problem this means that u1 = ua almost everywhere in 
8. For the second boundary value problem, the solutions in this case coincide almost 

everywhere up to rigid-body displacements. 
The proof of convergence of the sequence u@) will be carried out for an incompres- 

sible material. under the conditions 

1 r (eiJ ei2 rfi z feil) Q ~ tl < 1 

lrldrl <I 
I ei2 * eil 

(21) 

which are satisfied for G’ > l/a G. We shall seek the solution of the problem in the class 
of vector functions for which the condition of incompressibility, 6, = 6, holds. Then, 

instead of (15) and (191, we have, respectively 

s 
(u, V) CZQ =, t (11 u 11) (~9 V) ~SJ + & 1 XjvjdQ 

\ 
(22) 

S (dni*), v)& = Sz(l\ dn)/j)(dnt, v) dQ +-&j S xjvjem (23) 
The following theorem on the convergence of the successive approximation process 

holds. 
Theorem . Under the assumptions made above regarding Xj and the choice of the 

initial element, the sequence (23) converges in the space H to the solution of Eq. (22) 

provided that the condition 
G* > %I G (24) 

is satisfied. 
Proof. We introduce a representation of the functions (u, v) with the aid of their 

means. Let u be extended beyond Q by assigning it the value zero there and let h (2, 8) 
be an averaging kernel in the circle C of radius p with center at the point zZ!Y Q, the 
kernel being continuously differentiable in C the required number of times and equal to 
zero outside C. Then we have 

(u, v) = lim (u, v$, (u, vjp = “s (u (4). v (5)) h (2, E;f dC, EEC 
P--o 

Here the limit is to be undestood in the sense of the metric of the space of summable 

functions. 
Since by assumption \ Xi j c cEQ is a bounded functional in H , it can be represented in 

* 
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the form (g, vfn. Then (22) can be represented in the form 

(25) 

A much more general meaning can be attributed to the relation that has been obtained 
than in the case of (22) if the vector functions here are considered as functions of the two 

variables 5 and 3. ‘lb this end, we introduce a scalar product according to the formula 

(U‘ ‘-)sc = 5 (u, v)2 dB, (u, V)% = ;z(u (2, E), v (5, FM, t E E CT 2 E Q 

(the product (u. v)t coincides with (u. v) if u and v are functions of 5 alone) and con- 

sider the corresponding Hilbert space Hz of vecfor functions u defined in 511 X 0 for 

which a finite norm 11 u llzsa exists. By definition, the space H is imbedded in Ha. It is 
easy to prove that in Ha there exists a solution of the equation 

if by t (11 u ]Iz) is meant a function with properties analogous to those of z (I/u 11) and 
g = g (t, 2). For this it is sufficient to replace T and G* by o and G , respectively. in 
(26) according to (6) and to form a sequence of the form 

1 (UWf, V)% d0 = S 0 ( 11 U@f lb) (u’“! v)z dQ + -& f (g, vfa d&-J 

If the initial element of the sequence uVJf and g are selected so that .(u~~!, v)ao and 
(g, v)zo are bounded functionals in Hz, then all the (u@“, vjzo will be bounded function- 
als in He and u@jexists in HZ. The convergence of the sequence to the unique solution 

of Eq. (26) is proved in exactly the same way as for the case of the ordinary method of 
elastic solutions. Equation (26) defines a certain operator I’: g (I, Fj --+ u (I, tj. If 
g (5, 5) = g (Ef and g (& is chosen from Eq.(25) then the operator I’ determines u* (Ej, 

which is the solution of Eq. (25). For by setting v=v (8) in (‘26) we obtain Eq. (25) and 
because of the uniqueness of solutions of Eqs. (25) and (26), the solution of Eq. (46) will 
coincide in this case with the solution of Eq. (25). Let us now show that the sequence 
of the form 

(u f-j, v)z cm = 
s 

T ( j]tP) 112) (a, (27) 

g = g (5), u(O) = u(O) (5) 

converges to the solution of Eq. (26). 
The existence of the sequence u(n) follows from the boundedness of the functionals 

(u(O), vjsa and (g, V)SQ in Hs and consequently of all the (u(“)~,v~zQ . By uniqueness, 
this sequence coincides with the sequence (23). 

Let us represent a vector function in II in the form 

u=cP-4-9 (26) 

where rp and II, are defined as follows. At a point in the neighborhood of which (u*, 

u*j # 0, almost everywhere, we set 
cp (% E) = #$j u+ (0, $i&U--cp 

and for points where (u*, u+) = 0, we set cp = 0, tp = u. It is then easy to verify 
that the representation (28) has the following properties 

(u*, *)z = 0, fg, 4% = 6, (u*, qP)la = f II u* II8 II cF%t II u I!2 = II e lb” + II 9 IV 
It is clear from the last one that 11 (I 11 E and 11 JI 11 g are summable functions. 
In (26) and (27) we set v = (PC”+‘). Taking account of the properties of the decompo- 

sition we have 
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c , (e;, lp+q2 dc? = 0, II* 

< q 
From this 

s 
1 (@+l), q+“‘)z I&2 < q II Pil) l&Q II C) 112hl’ 

11 g@‘l) h-2 < q II \p@) llz* d tin II P IIs* -, 0 n + O” 
that is, as n 4 00, the sequence UP) tends to become “parallel” to n*. 

In accordance with (26) and (27) we have for the sequence II(~) 

s (u Cn+1) _ u* , v)z d-2 = 
s 

[T((l ll@ l\z)(u’? 92 - z(IIu* Ib)(U'. v)zl cm 

Setting v = u(~+I) - U* , using the representation (28), and taking account of (8) 

we have 

s [z ( II uTl2) (u 
(n) , u@+l) - u')2 - z(\lu* /2)(u*, tPl'- II*)21 &2 = 

= s [r ( II lP) 112) - t ( It fp) 112)l (q’“‘, @+l) - u’)zdQ+\z(l! II@‘) 112) ($@), $(nr1’)2 dQ + 

+s 

r(ll~in)jlz)(cp(n), @+l)- u*)2--~(llU'Ila) (u*P m'"+1'l~*)z(y(n)_u*,e'"t~,_u*)2da~ 

&p', g+u _u*)2_(u*, qp+l)- u*)2 

z (II I+) II?) - r (II P) lb7 
11 0) 112 - II (p@) II? 

( 1/ II cpln) 112 + II $‘“’ ll+- I/ dn) lb”) II dn) II2 II cp@‘+‘)- U* II2 dQ f 

t (11 (p@) 112 (f It dn) lb) - t (11 u* tb) (* tt “* 11“) II@) _ U. 112 11 ,$I+‘) _ u. lb dQ + 

(I!r II P) IL)- (f II u* IId 

_tsz(llu Co) tld ($@), @+‘))2 dQ 6 2~ 1 (f/s dn) 112” + II ‘kn’ II2 * II v(“) 112) It dntr)-- u* 112 dQ+ 

+ ? \ II Ffn) - u* II2 II cp (n+l) - u* tt2 ds2 + q 5 tt @) [b tl %cn+l) l/z d’d< 

< 2wl II P) - u* llzp II P) 1128 + T II P) ll2* II P1) II*52 + rl II 9’“’ - u’ Ihn II fP’- u* /Ia* 
since 

.F(fIIW”)II”, ((*in) 112 - 11 W! IId2 dQ f cl2 11 ‘li, n, 112 dQ, I ez_ ::, eil( < 2rl 

Thus we have 

II dn+l) - u* 11,; + II 4JCnt1) It,; < q II dn) - u* iI& II cp @+I) - u’ tlzdz + cs tt p t’*Q 

It follows from this that for sufficiently large n either 

II (p(n+r) - u* flao < E (E is a sufficiently small quantity) 

or II dntl) - u* 1129 d rll II rpcn) - u* IIs* 7 ‘I1 <i 

Assuming that the first relation, the desired one, is never satisfied, we arrive at the 

result lltp (n+p+l) - u’ &* < Tp 11 cp) - u* &* 

and as p --t 00 we have 

llcp P+P+fl- 1‘13 Its* + 0 

The theorem is then proved. 
It is easy to see from (27) that the process diverges if - r > n > 1. For setting 

” = g(n) , we obtain 

rl IIrp’“‘llz~~\~~(ll .@I 112) ll rp(“) llz” dQ I= 1 1 (I@(~~~), #n))2 dS-2 1 Q 1 \pcni ‘) &p II 6) b 

and then 
II g(n+1) Ilag-2 >, 11 II P) I&* >, rlR II Q@(l) &* -+ e, n -, 00 



At the same time it is clear from the proof of the theorem that the condftion q < 1 
in (8) need not be satisfied everywhere in Q. In particular, this condition can be violated 
on a manifold of smaller dimensionality than that to which the solution belongs, 

The convergence of the process with respect t3 the norm of the space H occurs more 

rapidly the smaller q is. It follows from (8) that q is smallest for 1 1 - G / G* ( = 
= 1 1 - a / 3C* 1 < 1, where a. is the smallest value of the slope of the oi vs. ei curve 

in the interval of convergence of the process. 
We remark that the proof of convergence is also valid in the case when effective 

moduli are chosen for each step of the process, In this case they should satisfy the con- 

dition %G<A <G, <B<oc. 

We note further that for negative z, which correspond to small G* ~ a nonmonoto~c 
sequence of approximations in the space I% is obtained. This can easily be seen from 
(27) if v is set equal to @ %), since then the scalar product (%tn:, I)(~*~& is negative, 
This circumstance permits us to make a “two-sided” estimate of the solution with the 
aid of two successive approximations. 

The proof which has been presented does not cover the case in which the scalar pro- 
duct (13) degenerates into an ordinary product, However, in this case the method af 
proof is made apparent by the example given below, in which consideration of the com- 
pressibility makes it possible to obtain a less restrictive condition of convergence than 

(24). 
As an example let us examine the convergence of the process in the case of symmet- 

rical deformation of a sphere. fn the present case, the equation which is analogous to 

(9) has the form 

where. u (r) is the radial displacement and R (t) is the radial body force. The sequence 
of approximate solutions is defined in the form 

d un 

Multiplying (30) by a continuously differentiable function V, vjr = 0 , and integrating 
over the interval [a, bl, the region of definition of the solution, we obtain, taking account 

of 031 

4 b 
zz- 

3 G* s 

~78~~ f ~n_,ei,_l d %~--u,_~ 2 d 24 

a 
qn f ei,_, +dr r r”$dr, et = - 

3 rdr;;- I I 

Setting v= @Y&-j-r. - +, we obtain according to (2X) 
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b 

4 
b 

Bps 
‘i* 

a n 
Then, introducing the definition 

we obtain 

i, e. the process converges like a geometric progression if k < 1. The condition X < 1 
can be satisfied even for 11 > f, for example, in eases where there is a flow region in the 
ut (et) curve. On the other hand, by choosing’q equal to the left-hand side of the Inequa- 

lity (8). we find that the following inequalities are consequences of h’ < 1 : 

4(G-GG’) 
3K+4G* <f* 

1-55~ G 
G*’ i--v T (32) 

where v is Poisson’s ratio, It is clear from this that in the present case convergence 

occurs even for G* < 1/8 G. 
The condition (32) forG* is necessary, For let us assume that u is the elastic solutlo~. 

Then w = 0 and, setting un_r = u in (31), we have from (7) that 

b 
d u,-u 

=-- - Go,) r2 dr 7 ra - 
d %+t- u dr 

dr r 

It is clear from this that the negative r. the approximation process is nonmonotonic. 
The successive approximations are then obtained as upper and lower estimates of the 
solution. Moreover the sequence will diverge if 

4 (G - G*) 
3K+4G* >k>i 

The authors are grateful to I. I. Vorovich and Iu. P. Krasovskii for their discussions of 
this work. 
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